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Abstract

The unsteady loading on an airfoil of arbitrary thickness is evaluated by using the generalized form of Blasius theorem

and a conformal mapping that maps the airfoil surface onto a circle. For a blade vortex interaction the results show that

the time history of the unsteady loading is determined by the passage of the vortex relative to the leading edge singularity in

the circle plane. The singularity lies inside the circle and moves to a smaller radius as the thickness is increased, causing the

unsteady loading pulse to be smoothed. The effect of angle of attack is to move the stagnation point relative to the leading

edge singularity and this significantly increases the unsteady lift if the vortex passes on the suction side of the airfoil. These

characteristics are different for a step upwash gust, which is considered as a simplified model of a large scale turbulent gust.

It is shown that the time history of the magnitude of the unsteady loading is almost completely unaltered by angle of attack

for the step gust, but it’s direction of action rotates forward by an angle equal to the angle of attack, extending an earlier

result by Howe for a flat plate in a turbulent flow to airfoils of arbitrary thickness. However spectral analysis of the gust

shows that the high frequency blade response is reduced as the thickness of the airfoil is increased.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The unsteady loading on an airfoil caused by an incident gust is important in many applications and has
received significant attention in the literature. The problem of a two-dimensional flat plate airfoil in a uniform
flow encountering a harmonic upwash gust was addressed by Sears [1]. Amiet and Sears [2] extended the
solution to three dimensions for airfoils of large chord. Goldstein and Atassi [3] provided an asymptotic
solution for a two-dimensional potential flow over an airfoil of finite thickness, camber and angle of attack
based on the assumptions of thin airfoil theory. Atassi [4] showed how this solution could be split into three
independent terms that separated the effects of thickness, camber and angle of attack. Howe [5] gave a formula
for the unsteady loading on a body of arbitrary shape based on a volume integral of a Greens function and the
Lamb vector of the unsteady flow. He showed [6] that, for a flat plate in a turbulent flow the unsteady lift was
rotated forward as the angle of attack was increased. In Howe [7] it was shown that, for a stationary airfoil,
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the unsteady loading could be obtained using a surface integral over the body in which the integrand is a
Greens function multiplied by the velocity induced by the vorticity in the flow. It was also shown [7–9] that
the unsteady loading is strongly affected by the application of the Kutta condition at the trailing edge of the
airfoil. If the Kutta condition is not applied the time history of the unsteady loading exhibits a pulse as the
gust passes the trailing edge. If the Kutta condition is applied, and disturbances in the wake are convected at
the speed of the mean flow, then the pulse generated as the gust passes the trailing edge is completely cancelled.
By ignoring the trailing edge Howe [7] showed that the unsteady blade response approximated Sears function
for non-dimensional frequencies s ¼ ob/U41, where b is the semichord, U is the free stream velocity and o is
the angular frequency of the unsteady load. Gershfeld [10] considered a turbulent gust incident on a flat plate
of finite thickness and showed that the radiated sound was reduced at high frequencies as the thickness was
increased. Similar results were obtained by Martinez and Rudzynsky [11] and Grace [12] for blade vortex
interactions. Numerical methods such as the unsteady panel method described by Grace [12] or computational
methods based on the Navier Stokes equations, as described by Lockard and Morris [13], have given the
solution for the unsteady loading on airfoils of arbitrary shape.

In this paper we will show that the unsteady loading on a two-dimensional airfoil in an incompressible
potential flow can be obtained using the generalized form of Blasius’s theorem. The contribution of this
approach is that it shows directly the physical impact of both thickness and angle of attack on the unsteady
loading, without being limited by the assumptions of thin airfoil theory. It is shown that the characteristics of
the response to a blade vortex interaction are quite different from the response to a step upwash gust. The
blade vortex interaction is very sensitive to the effect of angle of attack, but this is not the case for a step gust.
It is found that, for the step gust, the time history of the magnitude of the unsteady lift is almost unaltered by
angle of attack, but its direction of action is rotated forward as the angle of attack is increased. This agrees
with and extends Howe’s [6] result for a flat plate to airfoils of arbitrary thickness. However spectral analysis
of the gust shows that the high frequency blade response is reduced as the thickness of the airfoil is increased.
2. Unsteady loading on an airfoil

2.1. The unsteady flow

The unsteady loading will be calculated for a gust incident on an airfoil at rest in a uniform mean flow. The
fluid will be assumed to be inviscid, incompressible and two dimensional so the unsteady loading can be
obtained from potential flow theory. The complex potential of the flow is defined as W(Z), (where Z ¼ X+iY
and (X,Y) represents a point in the physical plane), and can be obtained by mapping the airfoil surface onto a
circle in the complex z-plane using the transformation

Z ¼ ðz� lÞ þ ða� lÞ2=ðz� lÞ ðz� lÞ ¼ Z=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2=4� ða� lÞ2

q
, (1)

where a is the radius of the circle and l is a lengthscale to be defined below. For a Joukowski airfoil at an angle
of attack a, in a flow with uniform speed U, the complex potential is given (see for example Ref. [14]) as

W 0ðZÞ ¼ w0ðzÞ ¼ Uz e�ia þ
Ua2 eia

z
�

iG
2p

lnðzÞ, (2)

where the airfoil chord is 4a2/(a+l) and its thickness to chord ratio is given by 3O3l(a+l)/(4a2). For thin
airfoils l51 the chord is approximately 4a and the blade thickness to chord ratio is 5.2l. The surface of the
airfoil is defined by the circle of radius a in the z-plane centered at z ¼ 0 and the trailing edge of the airfoil lies
at z ¼ a. To satisfy the Kutta condition the mean circulation about the airfoil is given by G ¼ �4pUa sin a.

To calculate the unsteady loading on the airfoil we will consider the incident gust to be a point vortex of
strength g0 that is convected with the mean flow. Howe [8] has shown that the response of the airfoil to an
incident vortex is equivalent to the harmonic gust problem considered by Sears [1] and Goldstein and Atassi
[3]. These results assume Rapid Distortion Theory (RDT) [15–17], which requires that the vortex is convected
by the mean flow without being displaced by its image vortex inside the airfoil. This assumption cannot be
applied for a vortex which is convected along the stagnation streamline upstream of the leading edge because
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the vortex will come rest at the stagnation point. However this is not realizable for a vortex with non-zero
strength because the image vorticity will displace the vortex from the stagnation point and it will then be
convected by the adjacent flow. The issue of gust distortion next to the stagnation point can lead to numerical
errors for harmonic gust descriptions [18] but these are avoided by describing the incident gust as a point
vortex providing it is not located precisely on the stagnation streamline.

In this analysis we will assume Rapid Distortion Theory which requires that the vortex is convected by the
mean flow along a streamline without change in strength and we will avoid the issue of gust distortion at the
stagnation point by not placing a vortex on the stagnation streamline in numerical calculations. The vortex
position is then relatively easy to calculate and will by specified as z0(t) in the circle plane. The velocity
potential induced by the vortex and its image inside the circle is then

wvðz; tÞ ¼ �
ig0
2p

lnðz� z0Þ þ
ig0
2p

lnðzI � zÞ �
ig0
2p

lnðz=z�0Þ, (3)

where zI ¼ a2/z0
* is the location of the image vortex. The potential specified in (3) satisfies the non-penetration

boundary condition on the airfoil surface but does not satisfy the Kutta condition. This can be achieved by
introducing a vorticity distribution in the wake downstream of the trailing edge which ensures that the
unsteady velocity at the trailing edge is finite. If the potential induced by the wake is ww(z,t) then the unsteady
Kutta condition requires that w0vða; tÞ þ w0wða; tÞ ¼ 0, where the prime represents a derivative with respect to
the complex variable z. The wake will be assumed to lie on the x-axis in the circle plane so the velocity
potential induced by the wake is

wwðz; tÞ ¼
�i

2p

Z t

�1

mðtÞflnðz� xwðt; tÞÞ � lnðxI ðt; tÞ � zÞgdt, (4)

where m(t) is the rate of change of vorticity at the trailing edge at time t, xw(t,t) is the location of the vorticity
at time t generated at the trailing edge at time t and xI ¼ a2/xw. Note that xw(t,t)4xw(t,t) ¼ a+e when tot

and the small parameter e40 ensures that the wake is initiated downstream of the trailing edge. To satisfy the
Kutta condition we require that w0vða; tÞ þ w0wða; tÞ ¼ 0 and using Eq. (4) we obtain

w0vða; tÞ ¼
i

2p

Z t

�1

mðtÞ
1

ða� xwÞ
�

1

ða� xI Þ

� �
dt ¼

i

2p

Z t

�1

mðtÞ
xw þ a

aða� xwÞ

� �
dt: (5)

Using Eqs. (3) and (5) we obtain an integral equation for the vorticity in the wake asZ t

�1

mðtÞ
xw þ a

xw � a

� �
dt ¼ �g0

a

ðz0 � aÞ
þ

a

ðz�0 � aÞ

� �
. (6)

This integral can be solved by standard methods using Fourier transforms and will be discussed in more
detail below. However it is worth noting here that m(t) is real valued.

2.2. The unsteady loading

The unsteady loading on the airfoil can be calculated from the generalized form of Blasius theorem

FX þ iFY ¼
ir
2

I
C

dW

dZ

� �2

dZ

0
@

1
A
�

� ir
d

dt

I
C

W ðZÞdZ, (7)

where the contour integral is carried out over the surface of the airfoil. The first integral represents the
contribution from the circulation and will be represented by (FX+iFY)c. In steady flow the integral is evaluated
[14] by expanding the contour onto a circle with a large radius and then using a Laurent expansion to
represents the integrand. This leads to the conclusion that the load due to circulation is given by
�irGU exp(ia). However in unsteady flow the expansion of the contour to a large radius must take into
account the vorticity in the wake and the presence of the vortex at Z0. The same contour at a large radius can
be used but the result must be modified by adding the contributions from the vortex and the wake. Since the
wake does not support a discontinuity in pressure the contour C used in both integrals in Eq. (7) can be
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extended to enclose the wake without changing the value of FX+iFY. We can draw this extension from the
suction side of the trailing edge, along the upper surface of the wake to a circular contour of large radius, and
then along the lower side of the wake to the lower surface of the trailing edge. The contour must be indented to
bypass the singularity at the vortex located at Z0. The circulation load can then be defined by the combination
of two contour integrals as

ðF X þ iFY Þc ¼
ir
2

I
C1

�

I
C2

8<
:

9=
; dW

dZ

� �2

dZ

0
B@

1
CA
�

. (8)

The path C1 represents a circular contour of a large radius (but not so large that the starting vortex is inside
the contour) centered at the origin, and the C1 contour integral can be evaluated using a Laurent series as
before. The result will be given by the total circulation, including the contributions from the vortex and its
images inside the surface, which sum to g0 and the wake vorticity and its image, which sum to zero. The net
contribution to the circulation load will be – ir(G+g0)U exp(ia). The contour C2 represents a contour around
the vortex at Z0 and can be collapsed onto a small circle centered on the vortex location where we can
represent the integrand as

dW

dZ

� �2

¼
dW eðZ0Þ

dZ
�

ig0
2pðZ � Z0Þ

� �2

, (9)

where We(Z0) represents the complex potential at Z0 from all sources but the vortex itself. Using Rapid
Distortion Theory implies that dWe(Z0)/dZ is well approximated by the steady flow at Z0 and so the integral
over C2 yields a contribution to the circulation load of irg0V(Z0). The net circulation load is then given by

ðFX þ iFY Þc ¼ �irGU eia þ irg0ðV ðZ0Þ �U eiaÞ. (10)

The first term represents the steady load and the second gives the contribution to the unsteady load from the
vortex attraction to the surface.

The second integral in Eq. (7) represents the added mass which will be identified by (FX+iFY)m. The
integrand can be transformed to the z-plane and the contour carried out over the circle representing the
surface of the airfoil and the extension enclosing the wake, giving

ðF X þ iF Y Þm ¼ �ir
I
C

qwðz; tÞ

qt

dZ

dz
dz: (11)

First we will consider the case when there is no wake, and the Kutta condition is not satisfied, so the only
contribution to this integral is from the potential induced by the vortex (Eq. (3)), which gives

rg0
2p

I
C

1�
ða� lÞ2

ðz� lÞ2

� �
1

ðz� z0Þ

dz0

dt
�

1

ðz� zI Þ

dzI

dt
þ

1

z0

dz0

dt

� ��� �
dz. (12)

Using the residue theorem to evaluate the integral and including the contributions from the second-order
pole at z ¼ l and the simple pole at z ¼ zI gives the unsteady load due to the motion of the vortex as

ðFx þ iF yÞv ¼ irg0
ða� lÞ2

ðz0 � lÞ2
dz0

dt

� �
�

dzI

dt

� �� �
¼ irgo

ða� lÞ2

ðz0 � lÞ2
dz0

dt

� �
þ

a2

z20

dz0

dt

� ��� �
. (13)

The time history of the unsteady loading described by Eq. (13) is clearly determined by the rate of vortex
convection which can be specified using V(Z0) as

dz0

dt
¼

dz0

dZ0

dZ0

dt
¼

V ðZ0Þ

1� ða� lÞ2=ðz0 � lÞ2
. (14)

This has two peaks which occur when the vortex is at it’s closest point to the leading or trailing edge
singularities located at z0 ¼ 2l�a and z0 ¼ a. The time history of the unsteady load given by Eq. (13) will
therefore have a leading and trailing edge pulse, which can be conveniently identified by expanding the first
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term in Eq. (13) using partial fractions to give

a� l
z0 � l

� �2
dz0

dt
¼

1

2

�ða� lÞV ðZ0Þ

z0 þ a� 2l
þ
ða� lÞV ðZ0Þ

z0 � a

� �
. (15)

The first term represents the leading edge pulse while the second term represents the trailing edge pulse. The
magnitude of these pulses will be discussed in more detail in Section 3.

To calculate the unsteady loading we must also include the added mass induced by the wake, which can be
obtained from Eq. (11) using

ðF x þ iFyÞw ¼ �ir
I
C

1�
ða� lÞ2

ðz� lÞ2

� �
qww

qt
dz, (16)

where

qww

qt
¼

i

2p

Z t

�1

mðtÞ
1

ðz� xwÞ

qxw

qt
�

1

ðz� xI Þ

qxI

qt

� �
dtþ

mðtÞ
2

. (17)

Applying the residue theorem to Eq. (16) over the contour which encloses both the airfoil surface and the
wake gives a solution which only depends on the simple poles at z ¼ xw and z ¼ xI. The unsteady load from
the wake is then

ðF x þ iFyÞw ¼ ir
Z t

�1

mðtÞ 1þ
a2

x2
w

� �
qxw

qt
dt. (18)

The integral in Eq. (18) clearly depends on the rate at which vorticity is convected in the wake. There has
been much debate (see Ref. [9]) about the choice of convection speed and so we will proceed by allowing this to
be a variable for the time being. In the Z-plane the wake convection velocity will be assumed to be V(Xw) and
so the convection velocity in the z-plane is

dxw

dt
¼

dxw

dX w

dX w

dt
¼

V ðX wÞ

1� ða� lÞ2=ðxw � lÞ2
, (19)

and it follows that

ðF x þ iFyÞw ¼ ir
Z t

�1

mðtÞ 1þ
a2

x2
w

� �
ðxw � lÞ2V ðX wÞ

ðxw � lÞ2 � ða� lÞ2

� �
dt. (20)

The unsteady loading is then given by the sum of Eqs. (10), (13) and (20) which may be combined as

ðFx þ iFyÞu ¼ irg0
ða� lÞ2

ðz0 � lÞ2
dz0

dt

� �
þ

a2

z2o

dz0

dt

� ��
þ V ðZ0Þ �U eia

� �

þ ir
Z t

�1

mðtÞV ðX wÞ 1þ
a2

x2
w

� �
ðxw � lÞ2

ðxw � lÞ2 � ða� lÞ2

� �
dt. (21)

The first term in Eq. (21) is easily calculated from the location and velocity of the vortex. The second term
however depends on the time history of the wake vorticity and requires the evaluation of a convolution
integral. It will be shown in Appendix A how this can be carried out using Fast Fourier Transforms.

Eq. (21) simplifies considerably for a flat plate at zero angle of attack for which V(Z0) ¼ V(Xw) ¼ U and
a ¼ l ¼ 0, so using Eq. (14) gives

ðFx þ iF yÞu ¼ 2irg0U Re
a2

z20 � a2

� �
þ irU

Z t

�1

mðtÞ
x2

w þ a2

x2
w � a2

� �
dt. (22)

Expanding both terms using partial fractions gives

ðF x þ iFyÞu ¼ irg0U Re
a

z0 � a
�

a

z0 þ a

� �
þ

irU

2

Z t

�1

mðtÞ
xw þ a

xw � a
þ

xw � a

xw þ a

� �
dt. (23)
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This shows that the vortex induces a pulse at z0 ¼ �a and z0 ¼ a but, by using Eq. (6), we see that the term
dependent on (z0�a)�1 exactly cancels the singularity of the convolution integral that occurs when xw ¼ a.
Combining Eqs. (6) and (23) gives

ðF x þ iFyÞ ¼ �irg0aU Re
1

z0 þ a

� �
þ

irU

2

Z t

�1

mðtÞ
xw � a

xw þ a

� �
dt. (24)

The first term represents the leading edge pulse and the second the contribution from the wake. It will be
shown in Appendix A that Eq. (24) reduces to the result that would have been obtained if the analysis had
been carried out in the frequency domain using Sears function.
3. Discussion

3.1. Results for a flat plate

To verify the results given above we will first consider the case of a flat plate at zero angle of attack in a
uniform flow for which the unsteady lift can be calculated using Sears function. Using Eq. (24) the unsteady
loading can be split into two parts: the first is the leading edge pulse given by the first term in Eq. (24) and the
second is the wake pulse given by the second term in Eq. (24). The leading edge pulse is relatively simple to
evaluate from the potential mean flow, but the wake pulse requires the evaluation of a convolution integral
which is more involved. It is shown in Appendix A how this can be solved using Fourier Transforms and an
analytical solution is derived which reduces to the same result as would have been obtained by utilizing Sears
function. The relative magnitude of the leading edge and wake pulses is illustrated in Fig. 1, which shows the
unsteady lift L(t) ¼ Fy(t) for a vortex passing a distance 4a/10 above a flat plate. The leading edge pulse clearly
dominates and the wake pulse is only important as the vortex passes the mid chord point at time Ut/a ¼ 0.
The vortex passes the trailing edge at time Ut/a ¼ 2 and both the leading edge and wake pulses show a sharp
change in slope at this point. However the net effect is negligible as shown by the sum of the two pulses. The
overall signature is dominated by the leading edge interaction, and the sharpness of the pulse depends on the
distance of the vortex from the airfoil.

The spectra of the time histories ~LðoÞ shown in Fig. 1 have been normalized by the upwash spectrum of the
gust ~vðoÞ (see Eq. (A.5)) and compared to Sears function in Fig. 2 as a function of the non-dimensional
frequency s ¼ 2oa/U. The plots show the non-dimensional lift response function SLðoÞ ¼ j ~LðoÞ=4praU ~vðoÞj.
At non-dimensional frequencies s410 the spectrum of the leading edge pulse is identical to Sears function, but
at lower frequencies it exhibits an oscillatory behavior and asymptotes to 0.5 for s51. The magnitude of the
-10 -5 0 5 10
-0.5

0

0.5

1

1.5

Ut/a

C
L 

(t)

Fig. 1. The unsteady lift coefficient CL(t) ¼ L(t)/rUg0 for a vortex passing at a distance 4a/10 above a flat plate: (– J –) leading edge

pulse, (– & –) pulse induced by the wake, (—) sum of the two pulses.
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Fig. 3. Comparison between the lift response function SLðoÞ ¼ j ~LðoÞ=4praU ~vðoÞj induced by the wake of a flat plate calculated

numerically (dashed line) and using the theoretical formulation (solid line) given in Appendix A. Note that errors are only significant at the

lowest reduced frequencies. Number of points used in the transform is 8196 and the reduced frequency resolution is 0.0157.
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contribution from the wake is also shown and this is clearly only important at low frequencies (so3) The sum
of the leading edge contribution and the wake contribution exactly matches the Sears function as shown. At
low frequencies the leading edge and wake contributions are in phase and add to give a level which asymptotes
to one. At non-dimensional frequencies s�1 the two terms are out of phase and the leading edge contribution
is reduced by the wake contribution. It is also interesting to consider the high frequency approximation to the
Sears function whose magnitude is given by 1/O2ps. This is a good approximation at non-dimensional
frequencies s41 but tends to infinity at low frequencies. In the frequency range 1oso10 it is a better
approximation than the leading edge response in isolation.

The evaluation of the convolution integral in Eq. (24) can also be carried out numerically using Fast Fourier
Transforms, as shown in Appendix A. While this is not necessary for the flat plate, it will be required for an
airfoil of finite thickness or at an angle of attack and so the accuracy of the numerical method needs to be
established. Fig. 3 shows a comparison of the wake pulse calculated numerically and theoretically as a
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function of frequency. It is seen that, apart from the lowest frequency bin, the error in the numerical method is
very small and should give accurate results when applied to different configurations.

3.2. The effect of thickness and angle of attack

To demonstrate the effects of thickness and angle of attack on the unsteady loading Fig. 4 shows a
calculation (using the approach described in Appendix A) for a vortex passing an airfoil with a thickness to
chord ratio of 0.15, at three different angles of attack. The results are presented as lift and drag components
where the lift is given as the unsteady loading normal to the direction of the flow, L ¼ imag((FX+iFY)exp(�ia))
and the drag is in the direction of the flow and given by D ¼ real((FX+iFY)exp(�ia)). The vortex is initiated at
a point on a streamline which, at upstream infinity, would have been a distance equal to 10% of the chord
above the stagnation streamline. The initiation point of the vortex should therefore be independent of the
angle attack and thickness of the airfoil. Fig. 4 shows that the unsteady lift can be represented by a pulse which
peaks as the vortex passes the leading edge, but, as in the case of the flat plate, there is no apparent trailing
edge pulse. The amplitude of the leading edge pulse increases with angle of attack. In contrast the unsteady
drag exhibits a leading edge pulse which is negative causing leading edge suction which increases with angle of
attack. When the vortex has passed the leading edge the drag is positive and decays slowly to zero as the vortex
progresses.

3.3. Response to a step function upwash gust

An alternative gust type is a step upwash gust which can be represented by a sheet of vorticity normal to the
direction of the incident flow at upstream infinity. In a uniform mean flow, and assuming Rapid Distortion
Theory, the gust convects without modifying itself and represents a step change in upwash velocity. The step
gust, while unrealizable in practice, is a reasonable model for a large lengthscale turbulent gust, and the
unsteady loading caused by a step gust will be indicative of the loading from the low wavenumber components
of the turbulence spectrum. To model a step gust the vortex sheet is specified by the superposition of elemental
vortices of strength g0 ¼ DvDh separated by the distance Dh where Dv is the magnitude of the velocity jump
across the step gust. To avoid numerical errors we need to ensure that a vortex is not placed on the stagnation
streamline (see Section 3.5 for numerical details).
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Fig. 4. (a) The unsteady lift coefficient CL(t) ¼ L(t)/rUg0 and (b) unsteady drag coefficient CD(t) ¼ D(t)/rUg0 for a vortex initiated at

10% of the chord above the stagnation streamline for airfoils at different angles of attack. Airfoil thickness to chord ratio is 0.15. Angle of

attack: –– 01, – – 51, – � – 101.
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The unsteady loading from a step gust can be calculated using the approach described above by summing
the contributions from each elemental vortex and the results are presented in Fig. 5. In this case we expect
(from Ref. [6]) that the effect of angle of attack on the unsteady loading will be to rotate the loading vector
forward by an angle equal to the angle of attack. To illustrate this effect the results presented in Fig. 5 are for
the forces relative to the direction of the loading suggested by Howe, which is rotated forward by 2a from the
direction of the chord. This gives the forces FL ¼ imag((FX+iFY)exp(�2ia)) and FD ¼ real((FX+

iFY)exp(�2ia)). If Howe’s theory for a flat plate applies to an airfoil of finite thickness then the pulses
shown in Fig. 5 should be independent of angle of attack, which is clearly the case for FL. The force FD shows
a small increase with angle of attack but this is smoothly varying and relatively insignificant.

An explanation of the effects which are taking place as the airfoil thickness and angle of attack are changed
is given by Fig. 6 which shows the flow about the airfoil in the circle plane. For a step gust a vortex will be
convected along each of the streamlines shown in the figure and the amplitude of the leading edge pulse will
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Fig. 5. The unsteady loading coefficients CFL(t) ¼ FL(t)/rUDva and CFD(t) ¼ FD(t)/rUDva for a step function incident on an airfoil at

angles of attack of 0 (solid line), 4 (dashed line) and 81 (dashed dot line). Airfoil thickness to chord ratio is 0.15. The direction of the force

component FL (shown in (a)) is rotated forward from the lift force direction by an angle equal to the angle of attack, and the force FD is

normal to FL.

Fig. 6. Vortex trajectories in the circle plane showing that they are almost identical in the leading edge region for all angles of attack if the

leading edge stagnation points are aligned: (a) vortex trajectories at 51 angle of attack, (b) vortex trajectories at 01 angle of attack,

(c) overlay of (b) onto (a) rotated clockwise by twice the angle of attack. (� ) location of singular pint for zero angle of attack, (+) location of

singular pint for 51 angle of attack.
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depend on the distance of the vortices from the leading edge singular point which is located at z ¼ �a+2l and
shown in the figure by the small circle. The effect of increasing the airfoil thickness is to move the singular
point to a smaller radius, which will cause the loading pulse to be smoothed. Fig. 6(a) shows the flow at an
angle of attack, and Fig. 6(b) shows the flow at zero angle of attack. In Fig. 6(c) the stream lines from Fig. 6(a)
have been rotated clockwise by an angle equal to twice the angle of attack, and overlaid onto the zero angle of
attack case. The trajectories of the vortices are now almost identical. For the angle of attack case the vortices
on the upper (suction) side of the airfoil pass closer to the leading edge singularity than the vortices on the
lower (pressure) side of the airfoil. For a blade vortex interaction, as considered in the previous section, the
proximity of the vortex to the leading edge singularity is the dominant feature that affects the magnitude and
shape of the unsteady loading pulse. When the blade is at a positive angle of attack a vortex passing above the
blade will always cause a larger unsteady loading pulse than a vortex passing below the airfoil. In contrast, for
a step gust Fig. 5 indicates that the increased contribution from the vortices on the upper side is offset by the
reduced contribution of the vortices on the lower side, and this conclusion is only weakly affected by the airfoil
thickness.

3.4. Lift sensitivity diagrams

Fig. 7 shows contours of the unsteady lift as a function of the physical coordinates of the vortex as it
convects past the airfoil for three different thickness to chord ratios at an angle of attack of 81. These pictures
reveal the sensitivity of the airfoil to a vortical disturbance as a function of the position of that disturbance in
the flow field. For the thickness to chord ratio of 0.15 the sensitivity reaches a maximum at a point displaced
about 3% chord ahead of the leading edge on the chord line. Closer to the airfoil surface the sensitivity drops
considerably as the airfoil surface is approached. The plots for the thinnest and thickest airfoil show that the
location of the maximum lift sensitivity moves away from the surface as the thickness increases. Unsteady drag
sensitivity values can be plotted in the same way [19] and are typically one quarter of those of the unsteady
lift. The trailing edge does have a noticeable influence, locally distorting both the lift and drag contours
(not shown).

The same results are shown in Fig. 8 in terms of the initial vortex position C/Ua and time Ut/a which are
identical to the non-dimensional drift coordinates of the flow (where C is the mean flow stream function).
These pictures show quite explicitly the effect of flow distortion on the response. In physical coordinates the
point of greatest sensitivity appears ahead of the airfoil leading edge, on the suction side of the stagnation
streamline. The same maximum appears at positive values of C in drift coordinates. Asymmetry is also
introduced because of the way the distortion affects the relative timing of events on the upper and lower
surfaces. Since the travel time of fluid passing to the suction side of the airfoil is significantly shorter than that
of fluid passing to the pressure side, events occurring at the same physical position are dislocated in time across
the streamline C ¼ 0. A good example is the response features associated with the trailing edge, that are
significantly advanced on the suction side and retarded on the pressure side and thus are not phase aligned.

Fig. 9 shows the same the lift sensitivity as a function of location in the circle plane for the different airfoil
thicknesses. These also show how the peak lift sensitivity moves away from the surface as the thickness is
increased.

Further insight into the sensitivity close to the leading edge is obtained by considering the leading edge pulse
in more detail. Using Eq. (15) in Eq. (13) and retaining only those terms which are singular at z0 ¼ �a+2l
gives

ðFx þ iFyÞv �
�irgo

2

acV ðZoÞ

zc þ ac

þ
azc

aczo

� �2
acV ðZoÞ

zc þ ac

� � !�( )
þ � � � , (25)

where zc ¼ z0�l and ac ¼ a�l. The unsteady lift from the leading edge pulse is then obtained by multiplying
Eq. (25) by �i exp(�ia) and evaluating the real part so

LLE ¼ �
rg0
2

Re 1þ
azc e

ia

acz0

� �2
 !

acV ðZ0Þe
�ia

zc þ ac

� �" #
. (26)
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Fig. 7. Unsteady lift sensitivity plots for airfoils of thickness to chord ratios of 0.06, 0.15 and 0.24 for an angle of attack of 81. Contours

show the magnitude of the unsteady lift for each vortex location in the physical plane (X/a, Y/a).
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The velocity is given by

V ðZ0Þ ¼
ð1� a=z0Þð1þ a e2ia=z0ÞU e�ia

1� ðac=zcÞ
2

 !�
. (27)

In the leading edge region the function LLE is quite complicated with a second-order pole at zc ¼ �ac and a
zero at the stagnation point z0 ¼ �a exp(�2ia). The influence of the singularity will dominate the lift
sensitivity close to the leading edge, and so we can assume that when z0��a we can approximate azc ¼ acz0, so

LLE � �
rg0U1

2
Re 1þ e2ia

� � a3
cðz0 þ a e2iaÞ�

a2 zc þ acj j2

� �	 

. (28)
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The largest values of this function occur when the vortex lies on the real axis and if this function is evaluated
for z0 ¼ x0 we find

LLE � �
rg0U1

2

a3
cðx0 þ aÞð1þ cosð2aÞÞ

a2ðx0 þ a� 2lÞ2

� �
. (29)

The function has a zero at x0 ¼ �a and by differentiating with respect to x0 we find it also has a maximum
at x0 ¼ �a�2l, which is upstream of the leading edge and dominates the contour plots in Figs. 7–9.

The interesting feature about the lift sensitivity plots is that they show the unsteady lift peaks as the vortex
passes the leading edge, but if the vortex is too close to the leading edge the response is reduced. The maximum
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level occurs when the vortex passes at a distance 2l in front of the leading edge in the circle plane. The location
of this maximum moves upstream and its magnitude is reduced as the thickness is increased.
3.5. Unsteady lift spectra

The spectral characteristics of the unsteady lift will be illustrated by taking the Fourier transform of the
unsteady loading time history for the step function gust used in Section 3.3. The gust is generated by an array
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of equally spaced point vortices along a line which is initiated at 901 to the stagnation streamline at a point
which is 30 chord lengths upstream of the center of the airfoil. The vortices are separated by 4a/100 and the
minimum displacement from the stagnation streamline is 4a/200 (it is shown in Ref. [19] that the spectra
converge when the minimum displacement of the vortex is less than 4a/100). To generate a step function the
length of the vortex array should be infinite, but for the purpose of numerical calculations it is limited to 40a.
The resulting upwash gust is plotted as a function of Ut/a in Fig. 10, and is seen to be a rather poor model of a
step function, but it does include a step discontinuity at t ¼ 0. The spectrum of this gust is shown in Fig. 11
and it is seen to have a slope of 1/o2 at high frequencies. Some care must be exercised when numerically
evaluating spectra for time histories such as those illustrated in Fig. 10. The spectra were calculated with
32,784 points for signatures between �UT/aoUt/aoUT/a with UT/a ¼ 240 and using a window function
defined by cos2(pt/T). The time history was also folded so that the discrete Fourier Transform was applied
over 0oto2T to a periodic time sequence made up of repeated pulses.

Fig. 12 shows the spectrum of the total unsteady loading ~F
2

T ðoÞ ¼ j ~FLðoÞj2 þ j ~F DðoÞj2 for the airfoil with a
thickness to chord ratio of 0.001 at 01, 41 and 81 angle of attack. Also plotted on this graph is the response
obtained by multiplying the gust spectrum by Sears function. Fig. 12 shows that the spectra are independent of
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Fig. 11. The spectrum of the gust LvðoÞ ¼ j~vðoÞU=aDvj2 used for the calculation of lift spectra as a function of reduced frequency s.
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Fig. 12. Unsteady loading spectra LðoÞ ¼ j ~F T ðoÞ=ra2Dvj2 as a function of reduced frequency s for an airfoil with a thickness to chord

ratio of 0.001 at angles of attack of 01, 41 and 81. (– � –) Spectrum based on Sears function. (—) Spectra for different angles of attack.
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Fig. 14. Unsteady loading spectra LðoÞ ¼ j ~FT ðoÞ=ra2Dvj2 as a function of reduced frequency s for airfoils with thickness to chord ratios

of 0.001, 0.06, and 0.15 at an angle of attack of 81. (– � –) Spectrum based on Sears function. (—) Spectra for different angles of thickness

airfoils. Lower levels are thicker airfoils.
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angle of attack, confirming our previous conclusions. The only exception is the 81 angle of attack case which
deviates from the other results at reduced frequencies above 10, showing a slight decrease in level. Increasing
the thickness reduces the rate of change in the gust time history and the high frequency loading response
function is reduced as illustrated in Fig. 13, for an airfoil with a thickness to chord ratio of 0.15. Comparing
Figs. 12 and 13 shows a reduction in level due to thickness, but the effects of angle of attack remain the same
in each case.

Fig. 14 shows the effects of thickness to chord ratio for an airfoil at an angle of attack of 81. In all
cases the amplitude of the response decreases with increased thickness especially at high frequencies.
It is interesting to contrast these results with their time histories result with its time history shown in
Fig. 15. These show that the signature for the thinnest airfoil has the sharpest change of slope as
the gust passes the leading edge, and so we would expect thickness to reduce the spectral level at high
frequencies.
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Finally we note that the numerical results presented in this paper based on the analytical approach given in
Section 2, have been confirmed using a panel method [19].

4. Conclusions

The unsteady loading on a two-dimensional airfoil in an incompressible flow has been evaluated for an
airfoil of arbitrary thickness and angle of attack, without applying the assumptions of thin airfoil theory. It
has been shown that the unsteady loading is dominated by the leading edge pulse and the application of the
Kutta condition cancels the pulse generated as the gust passes the trailing edge, extending previously known
results for flat plates to airfoils of finite thickness and angle of attack.

For a blade vortex interaction the unsteady loading depends on the passage of the vortex relative to the
leading edge singularity in the circle plane. As the airfoil thickness is increased this singularity moves to a
smaller radius, smoothing the pulse. When the airfoil is at an angle of attack the stagnation point is moved
relative to the singularity and the unsteady loading pulse depends on whether the vortex passes the airfoil on
the suction or pressure side. If it passes on the pressure side it will always be further from the leading edge
singularity than if it passes on the suction side, and so the unsteady loading pulse is reduced.

The characteristics of the unsteady loading are quite different for a step upwash gust, which is more
representative of a large scale turbulent flow than a single blade vortex interaction. For a step gust the
magnitude of the unsteady loading time history is almost unaltered by changes in angle of attack a but the
direction of action of the force is rotated forward so that it makes an angle a with the lift direction.
This extends the result obtained by Howe [6] for a flat plate in turbulent flow to an airfoil of arbitrary
thickness subjected to a symmetric gust. However spectral analysis of the gust shows that the high frequency
blade response is reduced as the thickness of the airfoil is increased.

One of the most important applications of this theory is to airfoils in a turbulent flow. The extension of this
analysis to include a turbulent inflow is considered in Ref. [20].
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Appendix A. Numerical evaluation

The unsteady loading is given in Eq. (21) as the sum of the loading from the vortex motion, given by

irg0
ða� lÞ2

ðz0 � lÞ2
dz0

dt

� �
þ

a2

z20

dz0

dt

� ��
þ V ðZ0Þ �U eia

� �
, (A.1)

and the unsteady loading from the wake given by

ir
Z t

�1

mðtÞV ðX wÞ 1þ
a2

x2
w

� �
ðxw � lÞ2

ðxw � lÞ2 � ða� lÞ2

� �
dt. (A.2)

For a vortex in a potential mean flow specified by Eq. (2) it is relatively straight forward to determine
the vortex position z0(t) and velocity dz0/dt and hence evaluate Eq. (A.1) to obtain the time history
of the unsteady loading due to vortex motion. For the wake induced load given by Eq. (A.2) the main
difficulty is caused by the complexity of the integrand in the convolution integral. To obtain a solution we first
assume that the convection velocity of the vorticity in the wake is equal to the mean flow velocity at the trailing
edge so V(Xw) ¼ VTE ¼ (1�la)U cos a. Then using Eq. (1) we can define the location of the vorticity in the
wake as

xwðt; tÞ ¼ lþ X W ðt; tÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX W ðt; tÞ=2Þ

2
� ða� lÞ2

q
X W ðt; tÞ ¼ 2ða� lÞ þ ðt� tÞVTE, (A.3)

The integral in Eq. (A.2) may then be defined as

ir
Z t

�1

mðtÞqðt� tÞdt; qðtÞ ¼ VTE 1þ
a2

x2
w

� �
ðxw � lÞ2

ðxw � lÞ2 � ða� lÞ2

� �
t¼0

. (A.4)

Using Fourier transforms with the notation convention

~f ðoÞ ¼
1

2p

Z 1
�1

f ðtÞeiot dt (A.5)

gives Eq. (A.4) as

2pir
Z 1
�1

~mðoÞ ~qðoÞe�iot do: (A.6)

To evaluate the vorticity distribution in the wake we use Eq. (5) with vv(t) ¼ iwv
0(a,t) so

~mðoÞ ¼
a~vvðoÞ
~gðoÞ

gðtÞ ¼
xw þ a

xw � a

� �
t¼0

. (A.7)

We can evaluate Eq. (A.6) numerically by combining it with Eq. (A.7) and using discrete Fourier transforms
based on the Fast Fourier Transform algorithm. However some care has to be used in this numerical
calculation because both q(t) and g(t) have a singularity of order t�1/2 at t ¼ 0. Accurate numerical
approximation of the integrals was achieved by ensuring that the numerical series representing q(t), g(t) and
vv(t) were the same length, used the same time step and satisfied the causality condition. The discrete forms of
the time histories were therefore chosen as

vn ¼ vvðnDt� TÞ; gn ¼
0; nDtoT ;

gðnDt� TÞ; nDt4T ;

(
qn ¼

0; nDtoT ;

qðnDt� TÞ; nDt4T ;

(

where 1pnpN and the time histories are defined at equal intervals Dt. The number of points in the sequence is
N and must be a power of 2, so choosing T ¼ (N+1)Dt/2 ensures that g(t) and q(t) are not evaluated at t ¼ 0.
Numerical evaluation of Eq. (A.6) was then obtained using

2pira

Z 1
�1

~vvðoÞ ~qðoÞ
~gðoÞ

e�iot do ¼ 2piraDFT
IDFT½vn�IDFT½qnsn�

IDFT½gnsn�

	 

, (A.8)
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where DFT and IDFT represent discrete forward and inverse Fourier transforms used so that their
sign conventions are the same as used in Eq. (A.5). A smoothing function sn is required to prevent
truncation errors at the end points of the integral and sn ¼ cos2(pnDt�T)/2T) was found to be effective for this
purpose.

Analytical solutions can be obtained for the special case of a flat plate at zero angle of attack. The vortex
passes a distance h above the plate and is uniformly convected at the free stream velocity U. The Fourier
transform of the wake vorticity is obtained [8] as

~mðoÞ ¼
2U ~vvða;oÞeis

iaðH
ð1Þ
0 ðsÞ þ iH

ð1Þ
1 ðsÞÞ

; ~vvða;oÞ ¼
ag0
2pU
ðJ0ðsÞ þ iJ1ðsÞÞe�johj=U , (A.9)

where s ¼ 2oa/U and Jn and Hn
(1) represent Bessel and Hankel functions of the first kind of order n.

The spectrum of the unsteady lift L(t) ¼ Fy(t) can be obtained from Eq. (24) and is specified using Fourier
transforms as

~LðoÞ ¼ �rUðg0 ~I
ðþÞ
ðoÞ=2þ 2p ~mðoÞ ~qðoÞÞ

~I
ð	Þ
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þ

a

ðz�0 	 aÞ

� �
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�a e� oj jh=U
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h i
e�is

n o
. (A.10)

It may be shown that, by introducing Eq. (A.7) and using the Wronskian of the Bessel functions, Eq. (A.8)
reduces to the lift spectrum which would have been obtained by using Sears function directly, with the upwash
gust specified by the vortex as it is convected past the plate.
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